

H2020 Grant Agreement No. 857125

D3.2 Service Architecture
Specification

857125 ATLAS – D3.2 Service Architecture Specification

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no. 857125.

The sole responsibility for the content of this publication lies with the authors. It does not

necessarily represent the opinion of the European Union. Neither the EASME nor the

European Commission are responsible for any use that may be made of the information

contained therein.

857125 ATLAS – D3.2 Service Architecture Specification

Deliverable no. D3.2

Work package WP3

Dissemination level PU

Due date of deliverable 2020-04-01

Actual submission date 2020-04-30

Author(s)

Partner First name Last name Email

Fraunhofer Stefan Rilling stefan.rilling@iais.fraunhofer.de

AC Peter Fröhlich peter.fröhlich@agricircle.com

Contributor(s)

Partner First name Last name Email

AEF Volker Zippel volker.zippel@claas.com

AEF Stephan Adam adamstephan@johndeere.com

AEF Alexander Hammerschmidt a.hammerschmidt@dke-data.com

AEF Slawi Stesny slawi.stesny@agcocorp.com

AEF Franz Kraatz franz.kraatz@krone.de

AEF Hara Spathi Hara.spathi@aef-online.org

AC Mallku Caballero mallku.caballero@agricircle.com

Ethics & Security Ass. This deliverable is excluded from ethics & security assessment

Approval Date -

Remarks -

Gender-proofing Gender-sensitive language

Gender aspects in research not applicable to this deliverable

Proofing date 2020-04-01

Remarks -

Version Date Released by Comments Document

status

0.1 2020-03-03 Stefan Rilling Initial version Draft

0.2 2020-03-26 Franz Kraatz New sections Draft

0.3 2020-04-03 Stefan Rilling Progress in multiple sections Draft

0.4 2020-04-07 Stefan Rilling Relation to the use cases Draft

857125 ATLAS – D3.2 Service Architecture Specification

0.5 14.04.2020 A. Hammerschmidt Add the glossary definition,

security and different data

formats chapter

Draft

0.6 21.04.2020 Stefan Rilling Version for internal Review Draft

857125 ATLAS – D3.2 Service Architecture Specification

Table of Content

1 Introduction 14

2 Document overview 14

3 ATLAS architecture 15

3.1 Architecture drivers 16

3.2 ATLAS Network 18

3.2.1 ATLAS service setup 18

3.2.2 ATLAS data services 19

3.2.3 Integration of different data formats 21

3.2.4 Data service pairing 25

3.3 ATLAS AppEngine - On-premise Computing Platform 27

3.3.1 ATLAS apps 28

3.3.2 AppEngine SDK 28

3.3.3 AppEngine Management 30

3.3.4 AppEngine Certification 31

3.3.5 Safety Considerations 31

3.4 ATLAS central components 31

3.4.1 ATLAS Registry 32

3.4.2 ATLAS AppCenter 34

3.4.3 Validation and Certification 35

3.5 Version handling for capabilities in the architecture 36

3.6 Integration of security in the architecture 37

3.6.1 Security for data exchange 37

3.6.2 Security for AppEngine 39

3.7 Handling data forwarding in the architecture 40

3.8 Handling GDPR in the architecture 41

4 Relation from the architecture to the use cases 41

4.1 Fertilization Use Case 42

4.1.1 Setup 42

857125 ATLAS – D3.2 Service Architecture Specification

4.1.2 Preparation 42

4.1.3 In-field Operations 43

4.2 Platform independent cross brand machine tracking 44

4.2.1 In field operations 45

5 Conclusion 46

857125 ATLAS – D3.2 Service Architecture Specification
 7

List of Figures

Figure 1: The ATLAS Network overview. ..15

Figure 2: ATLAS Service Mesh Network...18

Figure 3: High Level Service Architecture ...19

Figure 4: ATLAS Data Service - Generic View..21

Figure 5: Pairing steps for connection establishment between systems26

Figure 6: Pairing steps for data access between data sources and users27

Figure 7: AppEngine SDK ..29

Figure 8: ATLAS central components ...32

Figure 9: Community registries ...36

Figure 10: Registration and onboarding flow for secure data exchange38

Figure 11: Security - AppEngine Pairing ...40

Figure 12: Endpoint agreement for data forwarding ..40

Figure 13: Data conflict with forwarded data ...41

Figure 14: Multi-tractor Operation with in-field communication ..43

Figure 15: Use case visual ...45

List of Tables

Table 1: Assumptions ...16

Table 2: Functional requirements ...17

Table 3: Non functional requirements ...17

Table 4: Different categories for live telemetry ..23

Table 5: Example of technical and information message types ...24

Table 6: Architecture components involved in the fertilization use case44

Table 7: Architecture components involved in the machine tracking use case46

857125 ATLAS – D3.2 Service Architecture Specification
 8

Glossary of Terms

Agricultural Software This can be an on-premise application, cloud solution or

software running on a single device like a PC, tablet or

smartphone.

Agricultural software can receive or send data to provide

extra services (documentation, evaluation, planning,

analytics, etc.).

Agricultural software can be connected to other systems or

devices via internet or directly.

FMIS (Farm Management Information Systems) is an

example of agricultural software.

ATLAS app An application capable of running in the ATLAS app engine.

ATLAS data services ATLAS data services are corresponding to the OASIS

definition “a mechanism to enable access to one or more

capabilities, where the access is provided using a prescribed

interface and is exercised consistent with constraints and

policies as specified by the service description”1.

ATLAS Network The “ATLAS Network” describes a set of rules, protocols,

flows and services which enable participants of the network

in the agronomical sector to exchange information and data.

The network consists of participants with different roles.

Those providing information or services and those

consuming information and services or even participants

covering both roles.

ATLAS Resource Identifier An Identifier to identify a unique resource in the ATLAS

Network. The Identifier could be a combination of the

participant id and the unique resource id in the participant

system.

Capabilities Capabilities are a list of technical message types, services or

commands which a communication unit, an agricultural

software or a data platform supports

Capabilities Service Every endpoint in ATLAS Network has to report his

capabilities of sending and receiving messages after

onboarding and when the capabilities change (e.g. an

1 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm

857125 ATLAS – D3.2 Service Architecture Specification
 9

application functionality is extended by a new module or data

format).

Command A command can be sent to the ATLAS Network from any

endpoint. The most common type of command includes a

message of a specific message type, that shall be forwarded

to one or more endpoints.

Communication Units These are mobile software applications, mostly running on

embedded systems or mobile devices to make a connection

to other systems.

CU's can communicate with the Internet in a variety of ways.

CU’s can buffer data to compensate for lost connections.

Machine combinations can communicate with other systems

via one communication unit.

Data Consumer The Data Consumer is a participant in the ATLAS Network

which mainly takes information of the Data Providers and

computes those for further usage.

Data Owner The Data Owner is the legal owner of any information flowing

through the network. An information can also be person

related.

Data Platform This is a software solution from a machine manufactures or

other providers. A Data Platform can be an on-premise or

cloud solution. It interacts between machines, sensors (SR)

and Agricultural software (AS).

Machines and sensors (SR) communicate via

Communication Units (CU) to the Data platforms. A Data

Platform can manage telemetry, agronomic or business data.

A Data platform can provide additional services

(documentation, device service, fleet management, etc.)

Data Provider The Data Provider is a participant in the ATLAS Network

which is mainly providing information into the network for

further use.

EFDI EFDI (Extended FMIS Data Interchange) is the working title

of an upcoming standard of the Agricultural Industry

Electronics Foundation (AEF).

It defines message formats for network communication

between machines and FMIS as well as between different

857125 ATLAS – D3.2 Service Architecture Specification
 10

FMIS, including the transfer of live telemetric data from

machines.

Endpoint An endpoint is an addressable entity in the ATLAS Network,

which is the communication entry point for a single

application instance or machine.

Endpoint Descriptions The endpoint description contains detailed information about

an endpoint. Important part of this information is the list of the

technical message types, services or commands the

endpoint supports.

Information Type A summary of different Technical message types.

ISOBUS DDI A DDI (literally: Data Dictionary Identifier) represents a device

or process parameter in the ISOBUS norm. Over 600 DDIs

are defined in ISO 11783-11, see

http://dictionary.isobus.net/isobus/.

DDIs are used, for example, in device descriptions to

describe properties, the supported settings, and the provided

data of a machine.

DDIs are also used to identify the data records in telemetry

messages.

ISOBUS,

ISO 11783, taskdata

Wikipedia: “ISO 11783, known as Tractors and machinery for

agriculture and forestry - Serial control and communications

data network (commonly referred to as "ISO Bus" or

"ISOBUS") is a communication protocol for the agriculture

industry based on the SAE J1939 protocol (which includes

CANbus)” (source: https://en.wikipedia.org/wiki/ISO_11783)

ISO 11783-10 describes the file-based and batch-oriented

interchange format between machines and FMIS, using XML

(ISOXML) and binaries with XML header data. This is called

a taskdata file set, even though it can contain many other

data (fields, products, crop, worker, and many more) and

need not even contain a task.

The ISOBUS standard specifies only the data but not how it

is exchanged between machines and FMIS.

IT Service A definition according to ITIL®: "A means of delivering value to

customers by facilitating outcomes customers want to achieve

without the ownership of specific costs and risks. The term

‘service’ is sometimes used as a synonym for core service, IT

http://dictionary.isobus.net/isobus/
https://en.wikipedia.org/wiki/ISO_11783

857125 ATLAS – D3.2 Service Architecture Specification
 11

service or service package." A service is understood as a

functional service of a subsystem, with which a contribution to

the function of the overall system.

Message A message is an information or perhaps a request, that is

sent from an endpoint to any other endpoint. A message can

also be the payload of a command.

Network Participant A network participant in the ATLAS context represents an

organization (service consumer or provider) which takes part

in the network in order to digitally exchange agricultural data.

Onboarding Service The onboarding is needed in order to connect the

communication units, agricultural software or data platforms

and create the data exchange endpoints.

Registry Service A trusted directory of ATLAS Participants and the ATLAS

Data Services they offer, accessible via APIs.

Sensor This is a device which detects or measures a physical

property and records, indicates, or otherwise responds to it.

The specific input could be light, heat, motion, moisture,

pressure, or any one of a great number of other

environmental phenomena.

The output is generally a signal that is converted for further

processing.

Service Provider A service provider provides IT services that consist of a

combination of experts, processes and technologies. The

type and scope of IT services are defined by a service level

agreement (SLA).

SLA A service-level agreement (SLA) is a commitment between a

service provider and a client. Particular aspects of the service

– quality, availability, responsibilities – are agreed between

the service provider and the service user.

Technical message types The technical message type describes the type of the content

of an ATLAS message, such as an EFDI live telemetry

message, or a JPEG image. Each technical message type

must be assigned to an information type, which represents its

meaning and purpose.

857125 ATLAS – D3.2 Service Architecture Specification
 12

Abbreviations and Acronyms

A Assumptions

AC AgriCircle

ADS ATLAS data service

AEF Agricultural Industry Electronics Foundation

API Application programming interface

AR Augment Reality

AS Agricultural software

ATLAS Agricultural Interoperability and Analysis System

AVI Audio Video Interleave

CAN Controller Area Network

CRUD Create, read, update, delete

CU Communication Unit

DDI Data Dictionary Identifier

EFDI Extended Farm Management Data Interface

EU European Union

FMIS Farm Management Information System

FR Functional requirements

GDPR General Data Protection Regulation

GPS Global Position System

HTTPS Hypertext Transfer Protocol Secure

IAN Interoperable Apps network

IDP Identity Provider

IPN Interoperable platform network

ISO International Organization for Standardization

ISV Independent Software Vendor

IT Information Technology

JPEG Joint Photographic Experts Group

LTP Linked Third Party

MPEG Moving Picture Experts Group

MQTT Message Queuing Telemetry Transport

NFR Non functional requirements

NGO Non-Governmental Organization

NIR Near-infrared

NPK Nitrogen, Phosphorus, Potassium

OASIS Organization for the Advancement of Structured Information Standards

857125 ATLAS – D3.2 Service Architecture Specification
 13

OAuth Open Authorization

OEM Original Equipment Manufacturer

OS Operating system

PC Personal Computer

PDF Portable Document Format

REST Representational state transfer

SDK Software development kit

SLA Service Layer Agreement

SME Small and medium-sized enterprise

SR Sensor

TIM Tractor Implement Management

TLS Transport Layer Security

VR Virtual reality

WMV Windows Media Video

XML Extensible Markup Language

857125 ATLAS – D3.2 Service Architecture Specification
 14

1 Introduction

The aim of this deliverable is the high-level description of the ATLAS interoperability

architecture. This architecture and its implementations will form the foundation of the various

technical solutions developed in ATLAS. It will allow the interconnection of sensors, agricultural

machines and data services in a reliable and secure way. A reference implementation of this

architecture will be created within the project and evaluated along a multitude of real-world use

cases.

A dedicated team of core architects from beneficiaries AC, Fraunhofer, AEF and AEF’s LTPs

is responsible for the creation of the reference architecture described in this document. Based

on lessons learned from the on-going work in ATLAS, further discussions inside the member

organizations and the reference implementation, the architecture will be continuously evolved

as needed.

2 Document overview

The foundation for the architecture specification is the outcome of deliverable “D3.1 –

Requirement analysis”. The work in this deliverable started with the collection of architecture

drivers (“3.1 Architecture drivers”) emerging from the stakeholder groups of the ATLAS

consortium: farmers, machinery manufacturers and data service providers. In the process of

the work conducted for this deliverable, the requirements and architecture drivers were further

refined and viewed from a software architecture and development process.

The high-level architecture derived from the drivers consists of two parts, (i) the ATLAS

Network and (ii) the ATLAS AppEngine, which complement each other. Chapter “3.2 ATLAS

Network” and “3.3 ATLAS AppEngine - On-premise Computing Platform” provide insights

about both approaches. Additionally, this section includes chapters about central components

identified (“3.4 ATLAS central components”), version handling for ATLAS (“3.5 Version

handling for capabilities in the architecture”), security (“3.6 Integration of security in the

architecture”), data forwarding (“3.7 Handling data forwarding in the architecture ”) and GDPR

(“3.8 Handling GDPR in the architecture”).

Chapter 4 provides one example use-case for each of the architecture approaches. “4.1

Fertilization Use Case” explains how the ATLAS AppEngine together with App’s can be

adapted and chapter “4.2 Platform independent cross brand machine tracking” adapts the

ATLAS Network architecture for integration scenarios.

The final chapter “5 Conclusion” provides lessons learned and an outlook, how the architecture

work will continue.

857125 ATLAS – D3.2 Service Architecture Specification
 15

3 ATLAS architecture

The technical concept of ATLAS to achieve the interoperability of sensors, agricultural

machines and data processing services is based on two approaches which complement each

other:

• ATLAS Network: The ATLAS Network aims for a service-oriented architecture which

enables the connection of sensor-networks, data platforms and data processing

services in a consistent and easy way.

• ATLAS AppEngine: The ATLAS AppEngine is a self-contained computing reference

platform on which apps may be easily installed and executed. This reference platform

should be able to be adopted easily for different use-cases (e.g. on-machine or on-

premise).

With the two approaches ATLAS can connect different sensors, machines and actors locally

(e.g. on the machine or on the farm) and on demand. It delivers data to data consumers, where

data can be stored, processed or be used by evaluation services. Furthermore, there will be

frameworks in the network for knowledge exchange and decision support as well as the

infrastructure to store and process data, granting access to single users, user communities,

SMEs, NGOs and other stakeholders to drive know-how, efficiency and sustainability in the

agricultural sector.

Figure 1: The ATLAS Network overview.

Figure 1 shows how the different participants and technologies can interconnect via the ATLAS

Network.

857125 ATLAS – D3.2 Service Architecture Specification
 16

3.1 Architecture drivers

The following section contains a list of assumptions, functional and non-functional

requirements which have been identified as architecture drivers for the ATLAS architecture.

Table 1: Assumptions

No. Description

A-001 GDPR conformity has to be taken into consideration.

A-002 Data exchange will be secured on transport layer.

A-003 Solution will support (occasional) offline scenarios, where machines act in areas
without permanent internet connection.

A-004 Data Sources will provide the temporal resolution to the dataset as defined in ATLAS.

A-005 Source systems will be able to map their User/Access rights management to the
ATLAS Access management.

A-006 Endpoint metrics which could be used for later invoicing scenarios and central billing
systems are out of scope.

A-007 Message level encryption lies in the responsibility of the participating service if
needed.

A-008 Code of Conduct for Ag data sharing based on contractual agreements has to be
taken into consideration.2

A-009 Assumption is that the technical (architectural) solution will probably need a logically
central registry service to be able to identify any participants in the network.

A-010 A mixed fleet is a group of equipment, independently from the owner or brand.

A-011 Consumer systems have to provide basic meta information for billing.

A-012 Only "certified" and "tested" participants can take part in ATLAS Network.

A-013 ATLAS central components will not store any transactional data.

A-014 Data access from implements to machines is only available through the current open
standards like for example ISOBUS. Specific use cases will bring us in the need to
discuss the currently available solutions.

A-015 ATLAS sets up a certification body(ies) for ATLAS “Label” governance, data platform
certification (maintain self-certification tools), AppEngine certification, app
certifications (maintain self-certification tools where relevant, and more where
necessary).
ATLAS defines a binding charter which lists conditions, rights and obligations for
every participant (machinery vendors and ISVs) in the ATLAS Network. E.g., the
obligation for any ATLAS participant to enable the “pairing" and relevant API access
with any other ATLAS participant for relevant capabilities in a non-discriminatory
manner.

A-016 All ATLAS project members (direct and indirect) commit to adhere to the ATLAS
Charter (obtain the ATLAS Label) in the course of the project.

A-017 ATLAS defines the concept of AppEngine: the specifications of a “box” and operating
system capable of supporting agricultural apps execution to automate sequences of
operations as well as to enable low-latency real-time operations.

2https://cema-agri.org/publications/19-brochures-publications/37-eu-code-of-conduct-on-agricultural-data-
sharing

857125 ATLAS – D3.2 Service Architecture Specification
 17

A-018 For quality assurance it will be needed to define specific Non-Functional
Requirements (NFRs) for specific use cases in terms of latency, computing time,
availability etc.

A-019 Each qualified request from a registered ATLAS participant needs to get a qualified
answer. Some requests may require pairing first.

A-020 ATLAS needs a central registry (one truth only), central certification (quality
assurance) and documentation on a certain level.

A-021 Data exchange in the ATLAS Network should be non-discriminatory at all times.

Table 2: Functional requirements

No. Description

FR-001 ATLAS shall provide a functionality that allows the service provider to propagate the
service availability based on region and/or country.

FR-002 ATLAS shall provide a functionality that allows the service provider to propagate
availability of object attributes based on region and/or country.

FR-003 Every participant should be able to limit and/or suspend connectivity to another
endpoint in order to secure own matters justified on justifiable reasons. This applies
to any possible centralized service in ATLAS as well.

FR-004 The architecture must respect multiple communication patterns related to the use
cases.

FR-005 Resources in the ATLAS Network which are crucial for the functionality of the
network and the capabilities of the participants need to be uniquely identifiable, but
the uniqueness is not limited to only those resources.

Table 3: Non functional requirements

No. Description

NFR-001 Processes to assess system security needs to be established.

NFR-002 The architecture needs to consider that specific use cases need faster or slower
response times in order to fulfill the use case. It must be assured that specific use
cases are respected.

NFR-003 Services for support and diagnosis tasks should be foreseen.

NFR-004 The architecture needs to consider eventual inconsistency as specific participants
may not be available at a given time.

NFR-005 A transparent request and response pattern needs to be used to ensure clear
service states.

NFR-006 At least parts of the architecture and APIs and their documentation shall reach a
maturity level to be able to be put into a standardization process.

NFR-007 All ATLAS architecture and documentation need to be freely available for further
development and research. All contributors agree that the final product, pattern,
system or solution is open source.

NFR-008 All solutions or architectures should be independent from any programming
language. This ensure the possibility for a maximum of participants to be able to
take part in the ATLAS Network. Any technological decision should not be relying
on specific software or hardware product.

857125 ATLAS – D3.2 Service Architecture Specification
 18

3.2 ATLAS Network

The ATLAS Network shall overcome the missing interoperability currently met in the

agricultural sector. To overcome this, the network needs to meet the requirements of the

farmers, OEMs, software providers and other stakeholders. In order to do so ATLAS is

envisioning a kind of service mesh architecture (see Figure 2) where every participant stays

autonomous and is responsible for implementing and providing the services offered. With this

architecture central components are kept to a minimum and only a central service registry and

app centre services are needed as first place to go.

Figure 2: ATLAS Service Mesh Network

3.2.1 ATLAS service setup

To be able to take part in the ATLAS Network each participant needs to register its services in

the ATLAS Registry so that it can be found and used by other participants of the ATLAS

Network. In the ATLAS Network each participant stays autonomous and is responsible for

implementing and providing the services offered in the network. This also includes security and

consent management. Figure 3 shows a high-level architecture of two participants registering

their services in the network. Each participant offers an own software (OEM/agricultural

Software) which accesses proprietary backend services (agricultural software services/ OEM

services) and via those the needed data. The access to the participant software, backend

services as well as the ATLAS data services (ADS) is secured via an identity provider (IDP)

owned by the participant. Additionally, it is possible for every participant’s service following the

ATLAS rules to join other hosted ATLAS compatible registries. User consent which needs to

be captured from every service in order to be able to secure the agreed data access and

transfer will be managed in a consent management system owned by the participant.

857125 ATLAS – D3.2 Service Architecture Specification
 19

Figure 3: High Level Service Architecture

• Identity Provider (IDP): The identity provider acts as a central service in the participant

setup. Its function is the storage of identities and the authentication of identities for

services upon request.

• Participant software: Each participant in the network can have its own software

solution for the services it offers. If the participant has an own software and is

connected to another participant, he can use and/or show the data provided by the

other participant in his own software. (Agricultural Software; OEM Software)

• Participant service: Each participant can have own proprietary services. These

services can function as backend services for own software solutions or hardware on

the field etc. (Agricultural Software Service; OEM Service)

• Consent Management: A consent management system is used to gather and track

the user consent. The ATLAS Network will not provide a solution for capturing and

tracking the consent of a user. It is assumed that each participant has its own consent

management solution in place, which can be used to gather and track user consent in

the ATLAS context.

• Data: Data collected by services and stored by the participant for further usage.

• Service Registry: A centralized registry service where ATLAS data services can

register in order to be found and used. For further information see section 3.4.1.

3.2.2 ATLAS data services

The instances of the ATLAS data service pattern will be the central component of the ATLAS

interconnectivity network. The following describe the generic setup of the ATLAS data service

(service template) and is shown in Figure 4.

The ATLAS service template comprises the following five layers:

857125 ATLAS – D3.2 Service Architecture Specification
 20

Defined by ATLAS

- Service Interface: The service interface is responsible to establish the connection to

the corresponding partner. ATLAS will support multiple communication channel types

like REST, MQTT, WebSocket, etc.

- Service Layer Mapping: The service layer mapping defines a generic exchange

protocol with the associated generic data exchange format. The exchange protocol

defines a generic set of different basic functions for data exchange (e.g. GET, ACK,

SHOW), which in turn are used in different combinations for the realization of scenarios

(e.g. file exchange or data stream). Based on these scenarios, the various use cases

of the next layer can be mapped, and a reusability of existing scenarios is always

guaranteed. New use cases can be created very easily and implemented in existing

systems with little effort.

- Supported Format: Specific data formats are provided so that the data exchange can

be adapted to the specific requirements of the individual use cases. Building on the

generic protocol / data exchange format, various data formats such as ISOXML, PDF

or JPEG are integrated in this layer. In addition, it is very easy to integrate new data

formats for new use cases or more specific requirements.

Defined by ATLAS participant (optional)

- Data Format Conversion: Since only specified data formats can be supported in

ATLAS or only a specific version of the data format is used, there is the possibility for

every participant to convert the data format supported in ATLAS to its specific data

format. In the end, it is up to each participant to decide whether to use the data format

offered by ATLAS or to convert the data into their own format.

- Proprietary/Specific Data Format: Each participant in the ATLAS Network can use

their own proprietary data format within their own system. On the other hand, he is also

responsible for converting the proprietary format into the ATLAS data format.

857125 ATLAS – D3.2 Service Architecture Specification
 21

Figure 4: ATLAS Data Service - Generic View

3.2.3 Integration of different data formats

Currently there are various standardised, non-standardised, proprietary and other

manufacturer-dependent own data formats on the agricultural market available.

To be able to exchange the different standardised, non-standardised, proprietary and other

manufacturer-dependent own data formats, the following technical message type and

information type concept will be recommended.

3.2.3.1 The technical message type

The technical message type describes the type of the content of an ATLAS message, for

example an EFDI live telemetry message, or a JPEG image. Each technical message type

must be assigned to an information type, which represents its meaning and purpose.

The technical message types are the basis for the capabilities listed in an endpoint description,

and for the subscriptions of endpoints (endpoints subscribe to a technical message type, not

the information type - e. g. if an application subscribes to jpeg image, it will subscribe to jpeg,

not to image).

The technical messages types need to be assigned to information types. A technical message

type can be assigned to exactly one information type.

There shall be a way to create new technical message types with following requirements:

857125 ATLAS – D3.2 Service Architecture Specification
 22

Technical message type:

• Identifier = an unique identifier

• Description

• Information type

3.2.3.2 The information message type

To specify what kind of information data may be transported. The information type refers to the

meaning or purpose, and not to the technical data format. Each information type has one or

more technical message type assigned. The information type is a summary of different

technical message types.

The information types provided will be used by the End-User, where data exchange is created

on the level of information types.

There shall be a way to create new information types with following requirements:

Information message type:

• Identifier = an unique identifier

• Title and description

3.2.3.3 Live telemetry messages

A live telemetry message contains data points with data from the machines in one team set.

Each data point at least contains the time when it was logged. Additionally, each data point

can have a geo-position. Each data point may contain many log entries. Each log entry

contains the value of a specific parameter (DDI) of a specific component or function (device

element) of one of the machines in the team set.

DDIs (Data Dictionary Identifier) are used, for example, in device descriptions to describe

properties, the supported settings, and the provided data of a machine. DDIs are also used to

identify the data records in telemetry messages.

A filtering for specific DDIs could not be recommend, as this would have been too complex for

the end user. ATLAS Network end users can filter telemetry data for DDI categories that

abstract all DDIs into following categories for example:

857125 ATLAS – D3.2 Service Architecture Specification
 23

Table 4: Different categories for live telemetry

Live telemetry category DDIs (Data Dictionary Identifier)3

Machine data:

Data related to the machine characteristics

(not process relevant).

54 Minimum Tillage Depth

55 Maximum Tillage Depth

59 Minimum Seeding Depth

60 Maximum Seeding Depth

….

Application Data:

Data related to what is applied to the field

(e.g. fertiliser, seeds, plant protection, dry

matter, etc.).

1 Setpoint Volume Per Area Application Rate

2 Actual Volume Per Area Application Rate

3 Default Volume Per Area Application Rate

4 Minimum Volume Per Area Application

Rate

…

Guidance and geo data

Data related to geographical and guidance

information.

505 Tramline Control Level

506 Setpoint Tramline Control Level

507 Tramline Sequence Number

…

GPS geo position

GPS geo position (north and east

coordinates) where the telemetry data was

measured or logged.

…

Will be defined during the ATLAS project

…

General work data

Task and lifetime counter or average values

(counters that are not relevant for application

and/or yield).

…

Will be defined during the ATLAS project

…

Fuel and exhaust fluid consumption data

Data related to the consumption of fuel and

exhaust fluid (DEF) (total energy

consumption).

…

Will be defined during the ATLAS project

…

Crop and yield data

Properties of harvested material.

…

Will be defined during the ATLAS project

Process data

Data related to the main working process of

the machine.

…

Will be defined during the ATLAS project

…

…. …

3 http://dictionary.isobus.net/isobus/

http://dictionary.isobus.net/isobus/

857125 ATLAS – D3.2 Service Architecture Specification
 24

3.2.3.4 Maintain information and technical message types

In order to ensure extensibility of the ATLAS interface in terms of new message formats to be

supported, it must be possible to define and add new information types and technical message

types in an easy way, provided that the new types do not require any special logic for data

exchange or filtering.

Such new information and technical message types should be added by the source system

administrators, using a dedicated administration user interface or one other way.

However, only message formats that have a high significance and acceptance in the industry

and are therefore helpful for the exchange of agricultural data are added.

Table 5: Example of technical and information message types

Technical

Message Type
Information Type Description

iso-11783-10

taskdata
TaskData ISO compliant set of Taskdata

iso-11783-10

device_descriptio

n

Telemetry
ISO compliant set of device descriptions

connected

iso-11783-10

time_log
Telemetry

ISO compliant life telemetry data based on

the device description

bmp Image A Bitmap File

jpeg Image A JPEG File

png Image A Portable Network Graphics File

shape Shape Shape dataset e.g. as a ZIP-File

pdf PDF A PDF document

video avi Video An AVI Video

857125 ATLAS – D3.2 Service Architecture Specification
 25

Technical

Message Type
Information Type Description

video mp4 Video A MPEG4 Video

video wmv Video A WMV Video

..

3.2.4 Data service pairing

In the architecture are two different levels for pairing two systems together. The first stage of

the connection takes place at the technical level. Two systems establish a technically verified

and secure connection for data exchange. Building on this, the users of the systems establish

a legal release for their data to the users of other systems. This means only open data can be

obtained freely from all users from other systems. All other data are subject to access

restrictions and must be approved by the owner for third-party access. In the following, these

two levels are examined in more detail.

3.2.4.1 Pairing between services

In order for two systems to establish a connection to each other for data exchange, several

steps are required. Initially, the two systems are not known to each other and there is no further

descriptive information. Only the ATLAS Registry is known to the systems, since they have

also entered themselves here. This registry is therefore also the central point of contact for

connecting the individual systems to one another.

First, the requesting system can get all systems that provide a corresponding service with a

compatible version by searching the ATLAS Registry. From this, the requesting system selects

the desired entry and uses the information stored here to initiate the connection to the other

system. During the establishment of the connection, further information necessary for the

connection is exchanged between the two systems and configurations are defined. This

ensures that both systems exchange the data in the same way on a secure transmission path.

857125 ATLAS – D3.2 Service Architecture Specification
 26

Figure 5: Pairing steps for connection establishment between systems

Figure 5 shows the individual steps from searching the registry, establishing the connection

and the final connection for the secure data exchange.

3.2.4.2 Pairing for data exchange

After the systems have established a connection to each other for the data exchange, the

actual data access is still missing. For data access a distinction between open source and

user-related data must be made. Because with the open source data no further access release

is required. Once the connection between the two systems has been established, the open

source data can be obtained from third parties without any restrictions.

The situation is different with user-related data. Here the consuming user must first request for

the provision to the data. The request for data access is communicated to the owner of the

data by his system. Here the owner of the data has several options.

1. Data access is denied

2. Data access is set up for a limited time (can be revoked at any time)

3. Data access is set up unlimited (can be revoked at any time)

For this access, the consuming user receives a token, which must now be given for each

request for the data. The token links the access rights of the requesting user with the data.

Using the token, access to the data can also be withdrawn by the owner at any time by setting

the token to invalid. Decoupling is carried out so that there is a defined withdrawal of access

rights in the consuming systems.

857125 ATLAS – D3.2 Service Architecture Specification
 27

Figure 6: Pairing steps for data access between data sources and users

Figure 6 shows the described process between the systems for the release of data to third

parties by the owner of the data.

3.3 ATLAS AppEngine - On-premise Computing Platform

The ATLAS architecture identifies the need for a self-contained computing reference platform,

the AppEngine, on which apps may be easily installed and executed. An app is a fit for purpose

and self-contained software module that may interact, via the AppEngine SDK, with machinery,

sensors, cloud service and apps executing on other nearby AppEngines.

The AppEngine aims to provide a platform that supports apps to function with little or no

internet connectivity, such as for tractors operating in remote rural areas, as well as enabling

apps that require very low latency when processing nearby sensor data to actuate adjustments

in real-time on local devices.

There is no single AppEngine “box”; AppEngines may be built into machinery or provided as

appliances. In the case of tractors, an AppEngine is not meant to be a replacement of vendors’

built-in MICSs but an add-on that may be retrofitted, integrating seamlessly with existing

equipment. Adherence to the AppEngine reference specifications guarantees that the same

app binary may run on any AppEngine. Of course, AppEngines may have different capabilities,

in terms of processing power, storage of Inputs/Outputs.

857125 ATLAS – D3.2 Service Architecture Specification
 28

3.3.1 ATLAS apps

3.3.1.1 Real-time apps

These apps typically interact with the environment (robotics, machinery) in real-time based on

data exchanged with sensors and/or apps on other tractors (e.g. platoon management)

3.3.1.2 Job apps

Lean apps that download data (e.g. prescriptions), from cloud services that perform the heavy

processing lifting, and are then able to perform their operations off-line, typically on a tractor

where a job is a combination of a metric per GPS position, a driving path, a tractor guidance

and implement management including Headland management and folding.

3.3.1.3 Utility apps

Utility apps that provide information to human operators without otherwise influencing their

environment (e.g. drivability information on a field). Information from these apps can be shown

on a terminal or via a connected device in a head up display or on gadgets like AR/VR glasses.

3.3.1.4 Platoon apps

Platoon apps enable the cooperation of different AppEngine-based machines on a common

task (typically use case involves tractors in a field) via a local/mesh network. These scenarios

are enabled by deploying the same platoon apps on all the cooperating devices. This approach

enables a lean architecture; by enabling app siblings to interact with proprietary formats, there

is no need for complex app interoperability standards.

3.3.2 AppEngine SDK

The AppEngine SDK (see Figure 7) is a mediation layer that enables apps to interact with their

environment by abstracting the low level technologies and transports in a standardised API.

The AppEngine SDK is also responsible for restricting access of apps to specific information

or controls on the basis of the permissions that were granted for the app in the ATLAS registry.

857125 ATLAS – D3.2 Service Architecture Specification
 29

Figure 7: AppEngine SDK

Depending on the use case, different AppEngine implementation may provide only some of

the SDK modules detailed below. The only module that is required in all implementations is

the AppEngine Management.

3.3.2.1 T&I API

The Tractor and Implement API is an abstraction layer that enables apps to retrieve information

or send controls to the machinery. The abstraction will leverage existing standards, where

applicable (ISOBUS, TIM, Steering and Sequence control) but may also cover “standard” types

of robotics appendages via ad-hoc connectivity.

3.3.2.2 App2App API

The App2App API abstracts the low-level connectivity layers (e.g. various 802.11 variants) for

inter communication between sibling platoon apps. Application level messages and data

formats are private to each platoon app and are out of ATLAS scope

3.3.2.3 Sensor API

The Sensor API abstracts the low-level connectivity layers to and from sensors, and defines

formats for common data and measures. It is recommended that best practice format is

prescribed for ubiquitous measure types but custom/proprietary payloads remain possible

3.3.2.4 App UI

The AppEngine SDK provides user interface support to enable rich user interactions at runtime.

857125 ATLAS – D3.2 Service Architecture Specification
 30

3.3.3 AppEngine Management

The management functions are designed to enable interactions with the AppEngine and the

ATLAS AppCenter.

3.3.3.1 AppEngine pairing

This function enables the association of an AppEngine instance with an ATLAS AppCenter

account so that end-users may later select on which AppEngine instance a particular app

should be installed.

3.3.3.2 AppEngine OS/SDK Updates

This function enables the update of AppEngine OS & SDK over the air (typically for security

updates).

3.3.3.3 App Management

This function provides the means of installing and uninstalling apps on the AppEngine as well

as other general administration activities such as certificate renewals (if applicable).

Installing an app also involves the establishment of a link between the app and its companion

service, more specifically, between an app on a particular AppEngine instance and a

corresponding user account on the companion service. The pairing information is stored by

the AppEngine and accessible to the app.

Connections between AppEngine or apps and cloud-based services are always initiated on

the on-premise as the AppEngine may be off-line or have dynamic ip-addresses.

3.3.3.4 AppEngine Feature Support

Different AppEngine instance may offer different type of features. For instance, a tractor-based

AppEngine will typically be able to access ISOBUS/TIM/Steering/Sequence Control functions

via the T&I API, whereas a farm-based AppEngine will not. This API provides the ATLAS

AppCenter with the means to determine whether an ATLAS app is compatible with a given

AppEngine instance.

857125 ATLAS – D3.2 Service Architecture Specification
 31

3.3.4 AppEngine Certification

A certification process will be defined to certify AppEngine implementations. In particular, for

AppEngines destined to be installed on tractors and connecting to the

ISOBUS/TIM/Steering/Sequence Control, an AEF ISOBUS certification will be required.

3.3.5 Safety Considerations

Some app functions can impact machinery operations in a way that could be potentially

hazardous. For instance, an app influencing a tractor’s speed or automatically folding/unfolding

implements should do so in a way that is safe to people on or nearby the machine, particularly

for tractors that do not have built-in safeguards to override these commands in case of

necessity.

Apps requiring high safety class permissions will have to undergo a stricter certification process

before being approved in the registry.

3.4 ATLAS central components

The ATLAS architecture requires two central components that will be operated under the

authority of a non-profit governance body in order to ensure trustworthiness in the ecosystem:

(i) the ATLAS Registry that serves as a trusted directory for ATLAS services/apps and

participants, and (ii) the ATLAS AppCenter on which registered apps may be searched and

installed on AppEngines (see Figure 8).

857125 ATLAS – D3.2 Service Architecture Specification
 32

Figure 8: ATLAS central components

3.4.1 ATLAS Registry

The ATLAS Registry is the central component that serves as a trusted directory for ATLAS

data services/apps and ATLAS participants. Participants are entered into the registry after their

identity has been reasonably verified, at which point they may start submitting a request to

register their ATLAS Services. Upon verification that the ATLAS Service information is valid

and that the service complies with ATLAS requirements, the service entry is recorded and

becomes searchable by other ATLAS participants.

Every ATLAS service must be registered in the ATLAS Registry. Additional registries may be

created by interest groups that wish to define stricter domain-specific certifications for the

purpose of ascertaining stricter quality standards, for instance. Nevertheless, while ATLAS

participants (e.g. FMIS) may promote services with a specific certification, by connecting to the

appropriate registry, they must also connect to the ATLAS Registry to allow farmers to use

standard services as well.

3.4.1.1 Participant Registration Request

Independent Software Vendors wishing to provide ATLAS data services first need to register

their identity and contact information via the Participant Registration Request API.

857125 ATLAS – D3.2 Service Architecture Specification
 33

• participant name

• participant contact information

• … (full details are outside the scope of the high-level architecture)

3.4.1.2 Service Registration Request

Registered participants may submit Service Registration Requests via this API to request the

creation or update of a service registry entry by providing the following information:

• participant id

• service name

• service base url

• description

• provided capabilities to other services

• required capabilities from other services

• optional capabilities from other services

• required AppEngine permissions for companion app (where applicable)

• companion app:

o name

o description

o download url

o required permissions

o optional permissions

o hash on binary code

• … (full details are outside the scope of the high-level architecture)

3.4.1.3 Capabilities and Permissions

Service Capabilities

Capabilities are defined as granular endpoint accesses that may be either provided or

consumed. An endpoint identifies both the type of resource and the operation it performs

(CRUD). The detailed specifications of capabilities are outside the scope of this document.

It is the serving service’s responsibility to verify that an operation (endpoint) requested by a

client lies within the capability scope declared by the client. A normalised dictionary of

capabilities will be defined to enable meaningful interoperation and searches.

857125 ATLAS – D3.2 Service Architecture Specification
 34

App Permissions

Permissions correspond to specific AppEngine SDK operations that an app requires to

function. A normalised dictionary of permissions will be defined to enable meaningful

interoperation. Furthermore, the dictionary may categorize each permission based into safety

classes; for instance, permissions to commands that impact machinery operations will be in a

higher safety class than permission to access sensor data. Apps requiring permissions of

higher safety classes may then undergo a more extensive verification process prior to

acceptance in the ATLAS Registry.

3.4.1.4 ATLAS Registry Lookup and Search

These APIs may be used by ATLAS data platforms (e.g. FMIS) to retrieve details about a given

ATLAS data service, or to search for services based on various criteria such as capabilities.

3.4.1.5 Service Registry Entry Approval Process

The service registry entry approval process must validate the correctness of the entry request,

at the minimum, ascertain the existence of the provided services capabilities endpoints. If the

request includes a companion app entry, the approval process also verifies the availability of

the download URL and of the app’s integrity (by means of a hash, for instance).

Most of this process may be automated, but additional manual validation must be performed

for services with companion apps. A human expert should validate the a-priori relevance of the

requested permission with respect to the stated function of the app. For apps requesting highly

safety-sensitive permissions, an additional certification process may be required where it is

deemed that the AppEngine certification does not provide sufficient guarantees.

3.4.2 ATLAS AppCenter

The AppCenter provides a user interface to browse and search for apps, and the means for

farmers to install, update and uninstall apps on their AppEngines. Farmers wishing to use

ATLAS apps must register for an AppCenter account.

857125 ATLAS – D3.2 Service Architecture Specification
 35

3.4.2.1 App Publication

There is no specific app publication process. Since all apps are described in the context of a

companion service in the ATLAS Registry, the AppCenter can directly connect to the Registry

to retrieve all necessary information about apps to be presented.

Updating an app is done via an update to its companion service entry.

3.4.2.2 AppEngine Pairing

The AppCenter, in conjunction with the AppEngine, will provide a mechanism to let farmers

securely pair AppEngine instances with their AppCenter account.

3.4.2.3 AppCenter Browse and Search

The AppCenter web application will enable end-users to search for apps and view their

companion web services, details.

3.4.2.4 App Management

In a personal space of the AppCenter, users will be able to view their paired AppEngines and

to manage (install, uninstall, update, list) their apps. These operations will be queued in such

a way as to guarantee their eventual completion, in case AppEngine instances are currently

not in line, or connection issues occur.

A mechanism will be provided to link an app instance (within an AppEngine) with its companion

service so that inter-communication may securely be carried out.

3.4.3 Validation and Certification

The ATLAS Registry approval process aims at being as lean and quick as possible to enable

a fluent and agile open ecosystem. This approval process will include basic certification

processes (where possible, fully automated) to ensure the ability of the service to properly

integrate in the ATLAS Network. The basic certification will validate the ability to establishing

pairing to other services and may be extended to validate further core features over time.

However, we also recognise opportunity for other governance bodies to define and validate

stronger certification processes in given domains. Such certified services provide end users

with stronger a-priory quality guarantees.

857125 ATLAS – D3.2 Service Architecture Specification
 36

The means to enable these external certification bodies is via community registries (see Figure

9). Community Registries should conform to the ATLAS Registry API but are operated

independently from the ATLAS central components by third party organizations. These

organizations are free to define their own guidelines, processes and quality control that a

service must undergo in order to be included in their Community Registry. The Community

registries may only certify services that are already registered in the ATLAS Registry, thereby

ensuring universal basic conformity for all services.

Figure 9: Community registries

The presence of an ATLAS data service in a Community registry is therefore a guarantee of

certification in that community. ATLAS Data Platforms may promote ATLAS services

originating from specific Community registries to their end users but they must also provide

them with the means to access and configure basic-certified services available in the ATLAS

Registry.

3.5 Version handling for capabilities in the architecture

As the architecture and the resulting service patterns and interface specifications will be

developed through a process of concurrent circles of prototyping, inspection and adoption a

versioning will be used to ensure compatibility of the designed components of deliverables

within the ATLAS Network over time.

To counter the different demands for versioning there will not be just one version for all but a

set of solutions and designs all versioned individually and by specific ways of versioning.

857125 ATLAS – D3.2 Service Architecture Specification
 37

While a standardized document versioning through i.e. a GIT-repository is suitable for

documents there will be the need of i.e. URL-versioning for REST service endpoints, which

then refer to a specific version for an interface specification document.

All components and their type of versioning are still to define at the current level of maturity for

the architecture. The following example shows a possible versioning structure:

 Versions: (EXAMPLE)

 ATLAS 1.5: (consists of)

 Part 1: ATLAS Interoperable platforms network 1.5.0 (consists of)

 1.1: ATLAS IPN Service Registry 1.2.3

 1.2: ATLAS IPN Data provider 1.4.2

 1.3: ATLAS IPN Data consumer 1.5.6

 Part 2: ATLAS Interoperable Apps network 1.4.1

 2.1: ATLAS IAN AppEnvironment 1.4.2

 2.2: ATLAS IAN App Companion Services 1.2.0

3.6 Integration of security in the architecture

In the architecture there are different areas in which security aspects have to be considered

and integrated. This includes, for example, data security, the transmission security of

information, but also security aspects for app management between the App Center and App

Engine. To have not too many different technologies making implementation difficult, a uniform

concept should be developed. Depending on the requirements, this concept can be used to

integrate an appropriate and, if possible, already existing technology directly into the

architecture.

3.6.1 Security for data exchange

The security controls and sharing capabilities will vary between different on-premise or cloud-

based solutions. When different on-premise or cloud-based solutions are to be used for storing

information classified as restricted, then the following four security level criteria need to be met:

857125 ATLAS – D3.2 Service Architecture Specification
 38

1. Transport Layer Security (TLS) as a secure transport protocol (e.g. HTTPS) must be

available.

2. Integration with the registration services. (see chapter: ATLAS Registry)

3. Application key pair (public & private) as a key pair of the connected applications in

the ATLAS Network. This is used to create a signature for the first onboarding and easy

verification during data exchange process.

4. Endpoint certificate (optional) is used to encrypt the communication in the ATLAS

Network. It can be delivered with the onboarding request.

Provider's service has undergone third party security testing (i.e. vulnerability

scan/assessment or audit) and has continuous monitoring in place for system intrusions /

unauthorized access.

Figure 10: Registration and onboarding flow for secure data exchange

Figure 10 shows the individual steps from the registry and the final connection for the secure

data exchange.

First, a data platform must be registered in the ATLAS Registration Service (see chapter:

ATLAS Registry). This includes communicating the capabilities of the data platform, including

which data formats can be supported. After successful certification, a unique registration code

for the ATLAS Network is provided.

To ensure that the registration code is consistent and unique, it should have at least the two

following components:

• Identifier = an unique application identifier

• Version = an unique application identifier for the application version

857125 ATLAS – D3.2 Service Architecture Specification
 39

With this registration code a request can be sent from a data platform to the agriculture

software. After successful matching in the ATLAS service and internal validation, a

confirmation is sent as a verification to the data platform.

A unique and unambiguous key pair is then generated and exchanged between the data

platform and agriculture software in the ATLAS Network. This key serves as a digital signature

and allows secure communication between the parties. With digital signatures it should be

practically impossible to forge or falsify a signature or to generate a second message for which

this signature is also valid.

In order to exchange data between the data platform and the agriculture software in a secure

and encrypted way, a unique endpoint certificate will be generated at the endpoint level. This

certificate is used to securely exchange data between these two endpoints.

After successful integration of application key pair (public & private) a secure and encrypted

data exchange is possible.

3.6.2 Security for AppEngine

As discussed in section 3.3, in order to manage apps on the AppEngine (install / uninstall) a

pairing between the AppEngine and the AppCenter is required. In order to secure this pairing,

it is important to establish that the AppEngine instances are owned, or at least controlled by,

the AppCenter’s account owner. The AppEngine provides an on-board administration user

interface whose password is created on first activation. Once logged in to the administration

console, the farmer has access to a “Manage Pairing” option. Selecting this option will prompt

the farmer for his AppCenter account credentials. With valid credentials, the connection to his

AppCenter is established and the farmer can now invoke the pairing command which will

register a privately generated token (saved within the AppEngine instance) into his AppCenter

account. Similarly, the farmer may un-pair his AppEngine, either from the AppEngine

administration interface or from his AppCenter administration interface. The token is then used

to authenticate all upstream (AppEngine → AppCenter) or downstream (AppCenter →

AppEngine) communications. These operations can obviously only take place when the

AppEngine is in a location with Internet access.

857125 ATLAS – D3.2 Service Architecture Specification
 40

Figure 11: Security - AppEngine Pairing

3.7 Handling data forwarding in the architecture

Focus of ATLAS is to describe how participants of ATLAS can interoperate based on provided

use cases. Data forwarding beyond ATLAS cannot be avoided, each participant of ATLAS

needs to manage data in all matters himself therefore he can use the ATLAS Resource

Identifier. Especially for data forwarding this means that if a participant wants to forward data

to a 3rd party, individual agreements between all involved endpoints would be required.

Figure 12: Endpoint agreement for data forwarding

There are not restrictions how a participant has to store the data, thus there is also no

specification how a participant must treat data conflicts especially when data is coming from

two different sources but providing the same data this can lead to data duplication and

deviations that may impact results.

857125 ATLAS – D3.2 Service Architecture Specification
 41

Figure 13: Data conflict with forwarded data

The forwarded data can contain an ATLAS Resource Identifier as meta data information

associated with it. This could enable to the data service to identify resources in the network.

The function is listed in the ATLAS Registry as a capability.

3.8 Handling GDPR in the architecture

The rules and conditions given through the General Data Protection Regulation (EU) 2016/679

(GDPR) are a relevant constraint which has to be considered in appropriate ways. The ATLAS

AppCenter (see section 3.4.2) and the ATLAS Registry (see section 3.4.1) as central

components have been identified by the core architecture team to require special emphasis

on GDPR conformity. The management structure of ATLAS foresees the installation of

dedicated advisory boards to bring external expertise into the consortium. It is planned to install

such a legal advisory board with experts from the consortium members’ networks.

4 Relation from the architecture to the use cases

Within this section, the relation of the architecture to the concrete agricultural use cases

covered in ATLAS is illustrated by two example use-cases. A more extensive list of use cases

which are the drivers of the end-user requirements can be found within deliverable D3.1. In

this respect, the “Fertilization Use Case” can be considered as an aggregate use case to

demonstrate the relation of multiple features of the architecture, whereas the “Platform

independent cross brand machine tracking” points out the specific aspects of the ATLAS

interoperability architecture to interconnect multiple OEM data platforms.

857125 ATLAS – D3.2 Service Architecture Specification
 42

4.1 Fertilization Use Case

In this scenario, two tractors collaborate in real time to optimally apply the amounts of Nitrogen,

Phosphorus and Potassium (NPK). The first tractor dispenses just the right amount of slurry to

reach the required amount for NPK, whichever is reached first. The missing amounts of P and

K are transmitted via in-field communications to the second tractor that can then apply the

adequate amounts of fertilizers to reach the prescription goal.

The scenario will involve a farmer, two tractors, an NIR sensor, the farmer’s access to OEM

data platforms, a Fertilization service with its real-time platoon app, OEM data platforms, and

a meteorological service. Further services may be involved in the actual implementation, such

as a satellite imagery service, a fertilization product database service, etc., but as they do not

illustrate additional architecture features, they are left out from the scenario for the sake of

simplicity.

4.1.1 Setup

The farmer owns two tractors with an AppEngine. The first is equipped with a slurry tank with

a NIR sensor, while the second has both a front-mounted spreader and a trailer sprayer.

Pairing: the farmer establishes all necessary pairings with contributing ATLAS services, e.g.

between his Fertilization service account and an ATLAS meteorological service, between his

OEM data platform where he keeps information about his fields boundaries and optionally

about field driving paths, between two OEM platform services, etc.

AppEngine pairing and app installation: the farmer creates an ATLAS AppCenter account

to which he pairs both his tractors. The farmer can then locate the Fertilization service’s

companion app in the ATLAS AppCenter and install it on both his tractors.

4.1.2 Preparation

As the farmer prepares his task on his Fertilization web application, the Fertilization service

retrieves information on field boundaries (and driving paths, if available) from the peered OEM

data platform, meteorological data, etc.

The Fertilization service then determines the optimal amounts of NPK to apply on a fine field

geo-position granularity, based on algorithms processing satellite images, soil analysis data,

as well as regulatory constraints. This data also gets shared with the OEM data platform to

visualise in this environment.

857125 ATLAS – D3.2 Service Architecture Specification
 43

When ready, the farmer associates the two tractors he plans to use in the task in the

Fertilization web application and triggers the export of the prescription and other necessary

on-board data to the companion apps on the tractors.

4.1.3 In-field Operations

The first tractor follows a pre-defined path, received from companion app or recorded with the

app in the field, around the field and sends the path information in real-time to the second

tractor who follows in its tracks with some delay. The tractors positions are also recorded and

streamed by proprietary means to the OEM data platform of the respective tractor; these may

be consolidated into a service (via ATLAS service-to-service communication) where a farm’s

mixed-OEM fleet can be tracked in real-time.

The moment a tractor enters the field according to the prescribed path, the tractor stops and

the operator is informed that the implement is about to be unfolded, with an option to suspend

the operation.

The first tractor’s NIR sensor adjusts the rates of slurry dispense so as to reach the required

amount for NPK, whichever is reached first, in accordance with the prescription.

The geo-localised information on missing amounts (deltas) of phosphorus and potassium is

sent via App2App to the sibling app on the other tractor (see Figure 14). As the second tractors

advances, it uses the deltas received from the first tractor for its current location to deliver the

remaining amounts of P and K, based on the known properties of the products loaded on its

two tanks. The apps provide a consolidated field-wide visualisation of deltas to the operator as

the operation progresses.

Figure 14: Multi-tractor Operation with in-field communication

As soon as a tractor finishes its task and is about to leave the field, the tractor is stopped and

the operator is informed that the implement is about to be folded, with an option to suspend

the operation.

857125 ATLAS – D3.2 Service Architecture Specification
 44

All actually applied quantities are automatically recorded by the tractors’ built-in system as well

as by the apps. The tractor OEM transmits its data by proprietary means to their data platform,

while the app sends the consolidated values to their companion Fertilization service. The

retrieved data may be synchronized from the Fertilization service or the OEM data platform to

further ATLAS services, but this is not in the scope of the present use case.

Table 6: Architecture components involved in the fertilization use case

Architecture Feature Use case mapping

Platform data exchange (see section

3.2)

• Preparation data sharing

• Path sharing

• As applied value sharing

• Retrieval of field boundaries in data
platform by Fertilization service, etc.

• Tractor positions between OEM clouds

Service pairing (see section 3.2.4) • Between farmer’s Fertilization service
and his OEM data platform account, etc.

ATLAS Registry and Certification (see

sections 3.4.1 and 3.4.3)

• Fertilization service

• OEM data platform service

• Meteorological data service

• Etc.

ATLAS AppCenter (see section 3.4.2) • Account creation

• Search for app

• Pairing of AppEngines

• Installation of app on AppEngines

AppEngine (see section 3.3) • Pairing

• App installation

App and Companion service (see

section 3.3.3)

• Real-time platoon Fertilization app

• On-field app to App communication

• Prescription data download

• Consolidated as-applied upload

• Improved automation

Safety (see section 3.3.5) • Tractor speed control

• Implement management (boom folding /
unfolding)

4.2 Platform independent cross brand machine tracking

This use case covers the development of cross brand tracking services to enable the

equipment owners to track their equipment in systems of their choice, not related to any brand

or equipment manufacturer solution unlike today where owners are not able to see even the

simplest information like the geographical position of the multi coloured fleet in one place. The

setup of this use case includes a farmer with at least two equipment, starting with self-propelled

harvesting machines or tractors of different brands, all telemetry enabled and visible in a

tracking system (OEM or third party).

857125 ATLAS – D3.2 Service Architecture Specification
 45

Figure 15: Use case visual

The farmer needs to interconnect all tracking systems by a pairing mechanism that enables

him to decide in which of the (or a third one) tracking systems all tracking information of the

fleet shall be made visible.

This farmer should be able to discover which of the systems can be connected to each other

through a discovery function in the system the farmer actually wants to use for the task of fleet

tracking. After the discovery the farmer can enable the connection between the tracking

systems by using the credentials given out for any of the systems to be connected (OAuth and

system account connection).

After that the equipment needs to be running and working to actually produce data (starting

with a very small set of information) which then is transported to the coupled other systems.

4.2.1 In field operations

To actually get the use case running the participating equipment needs to be run in the field to

measure positioning and equipment data which then is transported to the tracking systems and

from there on to the tracking system of choice of the farmer.

The tracks of the equipment then are shown in all participating systems with a specified delay

which is acceptable for the farmer (a delay will occur in any case).

857125 ATLAS – D3.2 Service Architecture Specification
 46

Table 7: Architecture components involved in the machine tracking use case

Architecture Feature Use case mapping

Data platform data exchange (see

section 3.2)

• Preparation data sharing

• Self -propelled machine and tractor
positions between OEM data platforms

Data platform pairing (see section 3.2.4) • Between farmer’s tracking systems

ATLAS Registry and Certification (see

sections 3.4.1 and 3.4.3)

• Tracking services

• Etc.

5 Conclusion

In this deliverable document, we described the high-level reference architecture which will be

implemented to achieve one of the main goals of ATLAS: the interoperability of sensors,

agricultural machines and data platforms. The architecture was designed with concrete use

cases in mind. In this respect, two basic concepts are foreseen: data platform based data

exchange and processing, and on-board computing and processing capabilities through a self-

contained computing platform. With these complementary solutions, the implementation of

complex use cases with real-time requirements and challenging in-field conditions will be

possible, and a significant contribution to the digitalization of agriculture will be made.

The whole architecture was designed to require only a minimum of basic, central components:

the ATLAS Registry, the AppCenter and the AppEngine are sufficient to build a whole

ecosystem of applications.

As an explanatory aspect it must be added that the central components will need a strong

regulation regarding safety and security aspects through an independent authority. This

authority will need to fulfill tasks of certification and fostering of the ATLAS Network to ensure

that the quality of the services offered in the network comply to a defined level of quality and

reliability so that the network itself offers a significant benefit when joining.

Levels of certification for safety and security are to be defined over the course of the project

and not upfront to not design levels which later on cannot be fulfilled by joining participants.

The intention of this document is to provide the high-level blueprint of the ATLAS

interoperability ecosystem. The concrete implementation of the concepts presented will be

conducted within the course of the project and the technical details of all components will be

worked out in this respect.

