

Meeting Name +++ Venue, Date +++

ATLAS Reference Architecture

Stefan Rilling Fraunhofer IAIS

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement no. 857125.

Interoperability in digital Agriculture

Data Processing and Analysis Services

Agricultural Machinery

- Very heterogeneous landscape of machines, sensors and data platforms
- Exchange of data between all entities is a key-capability

Farmers have lots of things to manage

Meeting +++ Venue & Date +++

Complex Farms with multiple Sites

 Example from an ATLAS project partner, this is a normal farm setup

Multiple Software Tools in Use

- Example: One Farm, 7 different Software Systems
- This will probably increase in the future

Multi-Vendor Fleet Operations

Typical connected ISOBUS System

ATLAS Concept and Goals

Data Processing and Analysis Services

Agricultural Machinery

- Interoperability between
 - Agricultural machines, sensors and data services
- Standardized and extensible interfaces for data exchange
- Full control over the data through the farmer

ATLAS Interoperability Architecture

• High-level reference architecture

- Collaborative development process between industry partners, software developers, agricultural service providers
- Designed along concrete use-cases
- Two basic concepts complementing each other:
 - $\,\circ\,$ Data-platform based data exchange and processing
 - $\,\circ\,$ On-board / on-site computing and processing capabilities

ATLAS Service Mesh Network

• Each participant stays autonomous

- Responsible for implementing and providing services
- Central components kept to a minimum

ATLAS Network Participants

• Participants are defined through

- Own software and proprietary services
- Identity Provider (IDP) service to store and authenticate service identities
- Consent management system
- Data storage capabilities

Service Registry

• Central Component serving as a trusted directory

- o Identified participants can register services upon request
- Provided and required service capabilities are part of the request

• Service capabilities are granular endpoint accesses

- Type of resource and operation (CRUD)
- Service verifies that requested operation is within the capability scope

Data Services

Data Service Instances as the central participant component
 Data- and transport-technology agnostic

• Multiple Layers defined by ATLAS or (optionally) by participant

Data Services - Layers

• Service Interface

Establish connection and data transport

• Service Layer Mapping

• Defines a generic exchange protocol

Supported Format

- Technical message type (e.g. JPEG image, EFDI live telemetry message)
- Information message type (purpose of the information transported)

Data Service Pairing

 Service Registry as the only component known to each participant

ATLAS AppEngine for on-board Computing

• Provides a platform for executing applications

- o with little or no internet connectivity
- apps that require very low latency when processing nearby sensor data to actuate adjustments in real-time on local devices

ATLAS Apps

- Apps run within the AppEngine on an onboard computer
- Different type of Apps: Real-time apps, job-apps, utility apps, platoon apps
- Apps come with a cloud-based companion service registered to the Service Registry

ATLAS AppCenter

• AppCenter provides a user interface to

- browse and search for apps
- o install, update and uninstall apps on the respective AppEngines.

• App publication via companion services

 AppCenter connects to Service Registry to retrieve information on available apps

AppEngine SDK

- Interact with the environment
- Abstracting low level technologies and transport

Sensor API

Abstracts the low-level connectivity layers to and from sensors

• Tractor and Implement (T&I) API

 Retrieve information or send controls to the machinery based on existing standards (ISOBUS, TIM, Steering and Sequence Control)

o App2App API

 abstracts the low-level connectivity layers (e.g. various 802.11 variants) for inter communication between sibling platoon apps

AppEngine SDK – T&I API

- API to access machinery specific functionality
 - \circ Read from / write to the ISOBUS
- Access control and flow control layers for safety and security
 No direct access to the ISOBUS from the AppEngine

Certification and Safety

Different AppEngine instances may offer different type of features

 AEF ISOBUS certification required for AppEngine implementations destined to be installed on tractors and connecting to ISOBUS, TIM or Steering/Sequence Control

- Some app functions can impact machinery operations in a potential hazardous way
 - Example: setting tractor's speed, unfolding implements
- Apps requiring high safety class permissions will have to undergo a stricter certification process before being approved

Summary

- ATLAS interoperability reference architecture with two basic concepts:
 - Data platform based data exchange and processing
 - On-board computing and processing capabilities through a selfcontained computing platform
- Only two central components
 - Service Registry and AppCenter
- Implementations of the architecture will be conducted along concrete use cases

Thank you!

WP3 - ATLAS Reference Architecture

Stefan Rilling Fraunhofer IAIS

stefan.rilling@iais.fraunhofer.de

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 857125.